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Letters
Photochemical behaviour of 5-perfluoroalkenyl uracils
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Abstract—Phototransformations of derivatives of 5-fluoroalkenyl uracils depend strongly on the fluorinated substituents. 1,3-Di-
methyl-5-trifluorovinyluracil when irradiated in water with UV light (k > 300 nm) gives 1,3-dimethyl-(5,6-dihydrourac-6-yl)-diflu-
oroacetic acid as the only product, while the analogous 1,3-dimethyl-5-(E-pentafluoropropenyl)uracil isomerizes to its Z isomer. It is
suggested that the first transformation is thermodynamically controlled while the second one is kinetically controlled, the difference
being due to torquoselectivity.
� 2004 Elsevier Ltd. All rights reserved.
It is known that modified uracils with an unsaturated
exocyclic side chain in position 5 display significant
antiviral activity.1 Recently, we studied extensively
synthetic methodology to access 5-fluorinated alkenyl
uracils as well as to determine their structural proper-
ties.2 One of the reasons for our research is the potential
biological activity of fluorinated 5-alkenyl uracils. This
expectation is based on the geometrical similarity of
hydrogen and fluorine. The therapeutic properties are
attributed to the structural similarity of fluorine and
hydrogen-containing molecules (e.g., the 5-fluorouracil
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analogue of uracil) to such an extent that these mole-
cules are quite often not indistinguishable by enzymes.3

In our studies we were able to synthesize a series of new
derivatives of uracil with 5-perfluoroalkenyl groups,
which along with the endocyclic 5,6 double bond, form a
diene system.2

The photochemical properties of 1,3-dimethyl-5-(triflu-
orovinyl)uracil 1 were studied, assuming that the elec-
trocyclization of the diene would be a dominant
reaction. The intermediate, a cyclobutene derivative,
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was expected to undergo further transformations.
Moreover the presence of fluorine atoms in the cyclo-
butene moiety should stabilize its structure.4a Surpris-
ingly, during irradiation5 of 1 with UV light
(k > 300 nm) in water, we isolated 1,3-dimethyl-(5,6-di-
hydrourac-6-yl)-difluoroacetic acid 2, as the only stable
product.6 Irradiation of the same substrate 1 with higher
energy light (k ¼ 254 nm) led to cleavage of the C(5)–
C(trifluorovinyl) bond and gave 1,3-dimethyluracil as
the sole product.

The mechanism of these transformations seems to in-
volve a Michael type addition–elimination reaction after
the photochemical electrocyclization. The more stable
keto 5 versus enol 4 tautomer then reacts with a nucleo-
phile (water) leading to the most thermodynamically
stable product––a derivative of difluoroacetic acid 2. In
the case of irradiation with higher energy light (low-
pressure mercury lamp, k ¼ 254 nm) simple cleavage of
a C–C bond occurs.

It would appear that the final product 2 is formed via the
labile intermediate 3, the structure of which we were not
able to determine experimentally. We suggest that the
keto 5–enol 4 equilibrium should favour the keto tau-
tomer 5, which can sometimes be reversed.4 On the basis
of DFT calculations, however, keto form 5 is 0.4 kcal/
mol (1.7 kJ/mol) more stable than the enol form 4.7

These findings are in contrast to the photochemical
transformations of 1,3-dimethyl-5-(E-pentafluoro-
propenyl)uracil. It is surprising, that in this case only
E–Z isomerization was observed. No traces of inter-
mediates analogous to 4 or 5 were found in the reaction
mixture. The irradiation of a water solution of 6 led to a
photostationary state involving equilibration with 1,3-
dimethyl-5-(Z-pentafluoropropenyl)uracil 7, where the
more sterically congested 7 is the major product (HPLC
ratio 6/7¼ 1:1.54).9 Irradiation of 7 as the starting
material also led to the identical photostationary state.

This experimental observation suggests that the uni-
molecular transformation is much faster than the
bimolecular nucleophilic reaction with molecules of
solvent (water), as observed in the case of 1. Although
trans–cis photochemically induced isomerization is a
well-known reaction, we believe that in this case tor-
quoselectivity10 seems to be an important and domi-
nating factor. It seems that in the ring opening of the
intermediate cyclobutene 8, among the two substituents
–CF3 and –F responsible for the isomerization, the
fluorine being an efficient p-electron donor will prefer-
entially rotate outward, forcing the CF3 group to rotate
inward. As a result formal trans–cis isomerization is
observed. It is just another experimental example sup-
porting the torquoselectivity prediction based on com-
putational calculations.10
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